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The theory of well defined superstructures formed in binary mixtures of diblock copolymers with different 
molecular weights and composition in a strong segregation limit has been developed. Three types of binary 
mixtures were considered : a mixture of two cylinder-forming block copolymers; a mixture of cylinder- and 
lamellae-forming block copolymers; and a mixture of two lamellae-forming block copolymers. The 
formation (conditions and the thermodynamic characteristics) of mixed lamellar and cylindrical 
superstructures and their thermodynamic stability were investigated. It was shown that in the case of 
non-isomorphous block copolymers the change in mixture composition leads to a first-order phase transition 
from one morphology of the superstructure to another, i.e. to real phase segregation (each phase remains 
microphase segregated ). The theory was compared with experimental data. The possibility of the formation 
of cylindrical domains in the mixture of two lamellae-forming block copolymers was predicted. 
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I N T R O D U C T I O N  

It has been shown in earlier papers 1'2 in this series that 
the thermodynamic advantage of a mixture of molecules 
of different length grafted onto a planar surface (under 
conditions of mutual overlapping) ensures the thermo- 
dynamic stability of a single lamellar structure formed by 
a binary mixture of lamellae-forming diblock copolymers 
with different block lengths. This structure, referred to 
as a mixed superstructure, is thermodynamically more 
advantageous than the two lamellar structures formed 
by the individual components (at least in a certain range 
of mixture composition). The effect of mixing in a planar 
layer of grafted chains and in the lamellar superstructure 
of the block copolymers is related to a decrease in the 
degree of stretching of long chains (blocks) on mixing 
with short chains grafted onto the same surface (in the 
case of a block copolymer onto a narrow interface). 

In order to investigate block copolymer superstruc- 
tures with other morphologies, we considered 3 the 
thermodynamics of a mixture in the layers of chains 
grafted onto internal and external cylinder surfaces. It 
was shown that the thermodynamic advantage of mixing 
chains of two lengths is obtained when the chains are 
grafted onto the external and internal cylinder surfaces 
(convex and concave cylindrical layers). However, for a 
convex layer this effect is relatively weak, and the gain 
in free energy upon mixing is much lower than in the 
case of a planar layer. In contrast, for the internal 
cylindrical layer this effect is much more pronounced 
than for a planar layer. Moreover, in contrast to the 
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monotonic gain in free energy for a planar layer with 
increasing long-chain fraction, for the dry cylindrical 
layer densely filling the internal part of the cylinder, the 
composition dependence of the free energy of the layer 
is non-monotonic and passes through a minimum for a 
low fraction of long chains. Just as in the case of a planar 
layer, the thermodynamic advantage of mixing is 
determined by a decrease in the degree of stretching of 
long chains, whereas the additional effect in a concave 
cylindrical layer is due to a decrease in area per chain 
with increasing distance from the grafting surface. 

The aim of this paper is to further develop the theory 
of well organized superstructures formed in binary 
mixtures of type AN~ BN~ (i = 1 and 2) diblock copolymers 
with different molecular weights, N~, + Ng, and composi- 
tion far from the transition point of the system into the 
disordered state. Here a case will be considered in which, 
at least in a certain range of mixture composition, 
superstructures with cylindrical domains containing the 
minor component of block copolymers are formed. We 
will restrict ourselves to the case when only a lamellar 
superstructure can be a second mixed superstructure. 
Furthermore, since it follows from the theory of grafted 
cylindrical layers 3 that the strongest and the most 
interesting effects of mixing are observed for concave 
layers, only the case in which components are bidisperse 
with respect to one of the blocks, the block forming a 
cylindrical domain, will be considered. 

Three types of binary mixtures will be considered: 
A - - a  mixture of two cylinder-forming block copolymers 
forming a single cylindrical domain; B - - a  mixture of 
cylinder- and lameUae-forming block copolymers. In this 
case the morphology of the superstructure depends on 
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mixture composition, and when it changes, a transition 
between morphologies occurs; and C - - a  mixture of two 
lamellae-forming block copolymers. As will be shown 
below, in this case the non-monotonic dependence of 
free energy on the composition of the binary chain 
mixture in a concave cylindrical layer may lead to the 
stability of the cylindrical morphology in the mixture 
(certain requirements should be met with respect to the 
composition of the entire mixture and of individual block 
copolymers ). 

CHARACTERISTICS OF BLOCK COPOLYMER 
MIXTURES 

A binary mixture of diblock copolymers ANABN~ and 
ANABN~ will be considered (bidisperse only with respect 
to block B forming cylindrical domains). Just as before, 
a symmetrical chain element is a unit of length a (equal 
to chain thickness). Polymer stiffness which is assumed 
to be equal to both blocks is characterized by the 
parameter p = A/a  where A is the Kuhn segment. The 
values of N A >> 1 and N 2 > N~ >> 1 are the number of 
units in the corresponding blocks and 

N g  - 
~ -  />o (1) 

is the relative difference between the lengths of B blocks 
in the mixture components. The composition of these 
components is characterized by the values 

f l  = NA/NB f2 = NA/N2 = f l / (  1 + ct) < fx (2) 

Numerous experimental data 4 show that the composition 
of an individual diblock copolymer determines the 
morphology of the superstructure formed by this 
copolymer in a strong segregation limit. The values of f 
relatively close to unity correspond to lamellar (L) 
morphology and the range of higher f values corresponds 
to cylindrical (C) morphology with domains of the minor 
B component on a hexagonal lattice. Upon further 
increase in f ,  spherical (S) domains of the minor 
component on a cubic lattice are formed. (At f < 1 the 
A component becomes minor and, correspondingly, 
domain-forming. ) Theoretical investigations have estab- 
lished 5-7 the boundaries of the transition between 
different morphologies: f c ( L / C )  = 2.54, f s ( C / S )  = 7. 
For superstructures with A domains, f c  1 and f s  ~ 
correspond to the boundaries of L/C '  and C' /S '  
transitions. Hence, for the three types of binary mixtures 
of block copolymers mentioned earlier, we have 

A fc  < f l , f 2  < fs 

B fc  < f l  < fs, f c l < f 2 < f c  (3) 

C f c * < L , f 2 < f c ,  f c - f ~ < < l  

(for the inequality C, see below). 
The mixture composition will be characterized by the 

numerical fraction q of the molecules of component 2 in 
the system 

n2 
q - - -  (4) 

n 1 + n 2 

where n i are the number of molecules in each component. 

FREE ENERGY OF THE MIXED 
SUPERSTRUCTURE 

In order to solve the problem of the stability of a mixed 
superstructure, its free energy per molecule is written as 

A ~ = A F + q l n q + ( 1  - q) ln(1  - q) (5) 

where the last two terms are the contributions of the 
entropy of mixing of the components, and AF is the free 
energy of the chain in the system without taking into 
account the entropy of mixing. All the energetic values 
are expressed in kT units. 

In the case of a well defined superstructure (far from 
the point of microphase separation) it is possible, as 
before 2'7, to use the approximation of a narrow 
interphase layer. Then we have 

AF = AFs + AFA + AFa (6) 

where AF s is the surface free energy on the interface and 
AF A and AF a are the conformational free energies of A 
and B blocks treated as chains grafted onto an interface 
of a given geometry. For  the case of a cylindrical interface 
between A and B microphases (Figure I ) we have 

• a q)2NBa 
AF s - - (7) 

a 2 R 

where ~ / a  2 is the surface tension coefficient of the 
interface, tr is the interface (grafting) area per block 
copolymer molecule and b7 B is the averaged length of B 
blocks in the mixture. 

~7 B = (1 - q)U~ + qN 2 = N~(1 + ~q) (8) 

The last equality in equation (7) takes into account the 
fact that B blocks densely fill the interior of the cylindrical 
domain, so that its radius R is related to tr and NB by 
the equation Rtr = 2/~Ba 3. 

The expressions for the conformational free energies 
of A blocks in the matrix and B blocks in the domains 
of the cylindrical mesophase may be taken from the 
theory of grafted polymer layers. For  monodisperse A 
blocks which are equivalent to the layer of chains grafted 
onto the external surface of the cylinder of radius R with 
grafting density 1/tr, we have 3'4 

3 R 2 
AF A - 8pa2NBln(1 + NA/~TB) (9) 

As for the free energy of bidisperse domain-forming B 
blocks densely filling the interior of the cylindrical 
domain, this value has been considered in an earlier paper 

f 

/ \ 

/ \ 

\ / 

Figure 1 The element of a mixed cylindrical superstructure of a 
diblock AB copolymer : H1, the width of the short B chains sublayer; 
R, cylinder radius 
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in this series 3 and it has been shown [see equations 
(38) and (39) and Figure 8 in ref. 3] that 

7~ 2 R 2 
A t  B - G ( a , q )  (10) 

16p a2N~ 

where 

G(~, q ) =  (1 + ~q){x/~ 2 -  1216(1 + ~)u 2 

+ 0.512u(1 - 5~ - 10~ 2) - 12(1 + a)/2 

-- U3(6 -- ~ -- 5a2) ]  -'[- [--0.5141(1 + 5~) 

-}- 0.512U2(-- 10 + 3~ + 15~ 2) 

- 5 (1  + ~ ) u 2 ( u  2 - l 2) 

+ u 4 ( 6 -  ~ - 5~2)]} - 312~q (11) 

and l 1 = H 1/R is the relative thickness of the short-block 
layer in the cylindrical domain related to • and q [see 
equation (34) and Figure 5 in ref. 3] by the equation 

and 

q _ x / 1  -/~(i- = 2 ) -  ~ 

1 + ctq 1 -- ct 2 

11(1 --~) 
- 12 I n  

l - - x / 1 - - 1 2 ( 1 - c ~  2) 
(12) 

2(1 + aq) [1 ~x/1 12(1 ~2)] (13) 
U - -  - -  - -  - -  

1 - ~ 2  

[see equations (31) and (32) in ref. 3]. 
Using equations (7), (9) and (10) the summation of 

the three contributions to equation (6) for the cylindrical 
superstructure yields : 

2N~(1 + ~q)a@ R E 
A F =  + 

R a2N~p(1 + otq) 

x { ~ I n [ I + N A / N ~ ( I + ~ q ) ]  

" } 
+ 16 (1 + ~q)O(~, q) (141 

EQUILIBRIUM PARAMETERS OF THE 
MIXED SUPERSTRUCTURE 

It can be seen from equations (5) and (14) that AF is a 
function of the only one independent parameter of the 
superstructures: the radius of the cylindrical domain R. 
The entropy of mixing does not depend on structural 
parameters. Hence, for the determination of the 
equilibrium characteristics of the superstructure of 
cylindrical morphology, which is formed by a mixture of 
block copolymers with a fixed composition, it is sufficient 
to minimize AF with respect to R. [The problem of the 
equilibrium of the mixed superstructure with a given 
morphology requires special consideration (see below).] 
As a result of minimization, one obtains the values of 
the equilibrium radius R c of the cylindrical domain 
consisting of B blocks and, hence, the areas ac of the 
interface per chain as well as free energy per chain AFc. 
In reference 2 similar expressions have been obtained for 
the equilibrium parameters of the mixed lamellar 
superstructures [see equations (9) and (12) in ref. 2]. 

The results for superstructures with both morphologies 
may be written in the form of general expressions 

R x = ix(3a/2)(1  + ctq)(N~)2~3(AQx) - I  (15) 

a x = ixl~aa3/Rx = (2 /3 )a2 (N~) l / 3AQx  (16) 

AI~ x = qb(N~)l/3AOx (17) 

w h e r e x = C , L , i  L = l , i c = 2  

A = (rcz/4~p) 1/3 (18) 

Qc(q)= 3 [ ]  ( l+aq )2G(~ ,q )  

3 ( fl ~1/3 (19) 
+ ~ n  2 ( l + a q ) l n  l+~- -+c tq j j  

Qr(q) = (3/2)(1 + f~ + ~q3)1/3 (20) 

Equations (19) and (20) for QL and Qc are given for 
identical systems: a binary mixture of AB copolymers 
bidisperse only for block B. 

The values of Rx in equation ( 15 ) determine the layer 
width of bidisperse B blocks (R c is the radius of the B 
cylinder and RL is the half-width of the B lamellae). The 
transition to the case of monodisperse B blocks 5'7 is 
carried out a t q = 0 o r q - - -  1 o r ~ = 0 .  

The structure of cylindrical B domains or B lamellae 
is determined by that of the layers of grafted bidisperse 
chains (concave cylindrical or planar layers). It has been 
shown in references 1-3 that the ends of short and long 
chains in these layers are segregated. The ends of shorter 
B N' blocks are concentrated in a sublayer of thickness 
H1 adjoining the interface [Figure 1 and equation (11 )]. 
The ends of longer blocks are located in the central part 
of a cylindrical B domain of radius R c - HI or a planar 
B domain with a half-width R L - H I .  It should be 
recollected that the planar B domain consists of two 
counter layers with no mutual penetrability. The free 
ends in the planar and concave cylindrical layers are 
distributed throughout the thickness of the correspond- 
ing sublayer, the distribution being more uniform in the 
case of the concave cylindrical layer 3. 

Blocks A forming a solid matrix are monodisperse, so 
that their conformations are the same as in the case of 
a cylindrical superstructure formed by a monodisperse 
block copolymer. According to the results of references 
3, 5 and 8, their ends are concentrated near the external 
boundary of the convex cylindrical layer of thickness 
H - R c where 

H _N/Tf..~NA/I~.B=~/] + f , / (1  +~q) (21) 
Rc 

It should be emphasized that equations (9) and (11 ) for 
the free energy of the blocks are written with the 
assumption that they are extended with respect to the 
Gaussian size. Correspondingly, equations (15)-(20) 
describe the equilibrium characteristics of single 
cylindrical or lamellar structures under the condition of 
stretching of all blocks with respect to the Gaussian size. 
It has been shown in reference 2 that for the case of 
lameUar structures this stretching induces certain 
restrictions in the range of mixture compositions in which 
equations (15)-(20) are applicable. For cylindrical 
structures, this problem will be discussed later. 
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STABILITY OF MIXED SUPERSTRUCTURES 

So far we have considered only the characteristics 
of mixed superstructures without investigating their 
thermodynamic stability. In order to determine the 
stability of a mixed structure, its free energy should be 
compared to that of an alternative state. It should be 
borne in mind that we are interested in the behaviour of 
block copolymers under the conditions of strong 
segregation, so it is necessary to investigate the 
thermodynamic stability only of the microsegregated 
states. Let us consider the various binary mixtures 
described by equation (3). 

A: Mixture of cylinder-forming block copolymers 
If each component of a block copolymer mixture 

formed its own cylindrical structure, the dependence of 
the relative free energy Qo (per molecule) on the mixture 
composition would be described by a straight line: 

( 2 0 -  AF. . . . .  ,o 
~(N1) I /3A  

1 

~(N~)I /3A  

= [(1 -- q)Qc(q = O) + qQc(q = 1)] 

[(1 - q)AFc( q = O) + qAFc(q = 1 )] 

(22) 

It can be easily seen that in the case of a mixed cylindrical 
structure formed by both mixture components the value 
of Qc (q), with equations ( 17 ) and (19) determining the 
dependence of the conformational contribution of the 
free energy on mixture composition, is a concave function 
ofq (Figure 2). The contribution of the entropy of mixing 
to the total free energy A~(q), equation (4), can only 
additionally increase the concavity of this dependence. 
Hence, a mixed cylindrical structure formed by 
cylinder-forming diblock copolymers is stable against 
phase separation of individual mixture components into 
cylindrical structures. Moreover, since the curve of the 
dependence AF = AF(q) is concave over the entire range 
0~<q ~< 1, i.e. d2AF/dq 2 > 0 ,  a mixed cylindrical 
structure with any composition is also stable with respect 
to phase separation into any two cylindrical structures 
with different compositions. 

2.50 

QL 

Qc 

2.00 I 
0.00 0.50 1.00 

q 

Figure 2 Conformational contribution to a free energy of mixed 
cylindrical (Qc) and lamellar (QL) superstructures versus composition 
q of a mixture of two cylinder-forming block copolymers : f l  = 4 and 
f 2 = 3  

i 

3.00 

_t 
u 2.50 

j j . ' ~  

2.00 q* 
0.00 0.50 1.00 

q 

Figure 3 Conformational contribution to a free energy of mixed 
cylindrical (Qc) and lamellar (QL) superstructures versus composition 
q of a mixture of cylinder- and lamellae-forming block copolymers: 
f l  = 3.2 and f2 = 1.2. The broken line represents the free energy Q0 
of the system separated into two individual structures 

B." Mixture of cylinder and lamellae-forming block 
copolymers 

In this case the limiting structures at q = 0 and q = 1 
are different. It is evident that the structures formed at 
a low content of one of the components, q<< 1 or 
1 - q << 1, are also different and are determined by the 
predominant mixture component. Hence, as the mixture 
composition q changes, a transition from one morpho- 
logy of the structure to another morphology should occur 
in the system. 

Figure 3 shows the dependences of relative free energies 
of mixed superstructures Qc(q) and QL(q) formed by 
both mixture components [without taking into account 
the contribution of the mixing entropy, see equations (5), 
(17), (19) and (20)] on the fraction q of the 
lamellae-forming component. The broken straight line 
corresponds to the free energy of the system separated 
into two structures (lamellae and cylinders) formed by 
the individual components. 

Qo = (1 - q)Qc(q = O) + qQL(q ---- 1) (23) 

It can be seen from Figure 3 that the conformational free 
energy of the mixed superstructure is always lower than 
the average free energy of the individual superstructures. 
At low q the lowest conformational free energy is 
exhibited for a mixed cylindrical superstructure containing 
not only a host (cylinder-forming component) but also 
a guest (lamellae-forming component) [curve Qc (q) lies 
lower than curve QL(q) and broken line Qo ]. In contrast, 
at high q the lowest conformational free energy 
corresponds to a mixed lamellar structure including a 
guest, a cylinder-forming component [curve QL(q) lies 
lower than curve Qc(q) and broken line Qo]. 

Consequently, Figure 3 shows that in this system mixed 
superstructures should be formed containing both 
components : a host determining the morphologies of the 
superstructure and a guest inserted into the superstruc- 
ture of the host. When the mixture composition changes, 
the transition from one morphology to the other takes 
place, i.e. the host and guest exchange roles. The 
semiquantitative evaluation of the position of the middle 
of the transition (mixture composition q,)  may be 
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obtained from the condition QL = Qc, which gives the 
equation for the determination of q, as a function of f~ 
and f2 = f l / (  1 + ~). 

+ aq 3 + . f ,  = 2(1 + aq,)](1 + ~q,)G(~,q,)  1 

+ 21n l+l+c~q--~ 

The value of q, is a function of the composition of the 
individual block copolymers f l  and f2 = f l / (1  + ~). 
The dependence q, = q , ( f 2 )  at a fixed f l  > f c  
value is shown in Figure 4 (curves A and B). At 
f2 = f l / (1  + ~) > fc when both components are 
cylinder-forming, equation (24) has no solutions. A single 
cylindrical structure is formed in the system at all q values 
(case A). With increasing ~ and the transition into the 
range f2 < fc, a solution q, of equation (24) appears 
and is the increasing function off1 and f2. [Curves C-E 
in Figure 4 at f l  < fc will be considered below (case C ). ] 

I 

1.00 

.d 
0.50 

f c 

0.00 f i I t , 
0.00 0.50 1.00 1.50 2.00 2.50 

f2 

Figure 5 Boundaries qc and qL of the two-phase region versus 
composition of the lamellae-forming component f z  at fixed f l  and 
N~ = 100: ( - - ) f 1 = 3 ; (  - -  ) f , = 5  

Transition between morphologies. So far we have 
considered only conformational contributions to the free 
energy of a mixed superstructure without taking into 
account mixing entropy, equation (5). This did not affect 
the conclusions of the stability of the mixed structure 
because mixing entropy can only increase the advantages 
of this structure. However, it is necessary to take into 
account the entropy contribution to obtain a complete 
picture of the intermorphology transition. This transition 
is a first-order phase transition (the dependence of the 
conformational contribution to free energy has a break 
at point q., Figure 3), and it is possible to expect phase 
coexistence in the region of this transition. 

In order to determine the region of the coexistence of 
cylindrical and lamellar phases, the conditions of the 
equality of chemical potentials #i (i = 1,2) of each 
component of both phases are written as 

#lC(qc) =/~L(qL) 
(25) 

p2C(qc) = #L(qL)  

°° l 
0.00 0.50 1.00 1.50 2.00 2.50 

f2 

Figure 4 Mixture composition q,  corresponding to QL (q*) = Qc (q*) 
versus composition of the lamellae-forming component f2 at fixed fx : 
(A) f, = 5; (B) f, = 3; (C) fl = 2.5; (D) f, = 2.3; (E) f~ = 2.2 

Here, as follow from equations (4) and (5), we have 

k 6na / ' .z=const 

\ t~n 2 /nt=const  

~AFx 
A F ~ - q  6~q + l n ( 1 - q )  

~AF~ 
AG + (1 - q ) = - -  + In q 

O q  

(26) 

where AF x at x = C, L is determined by equations 
(17)-(20). 

The solution of equation (25) makes it possible to 
obtain the values of mixture content qc and qL > qc 
corresponding to a binodal (boundaries of the two-phase 
region, Figure 5). At q < qc a single cylindrical 
mesophase is formed. Its domains are formed by the 
blocks of both components mixed on the molecular level, 
equations (15)-(19). In this composition range, the 
increase in q does not change the type of the superlattice 
and leads only to a change in the size of its elements, 
as in case A when the content q of the more symmetric 
of the cylinder-forming components increases. At 
qc ~< q ~< qL the system forms two phases: a cylindrical 
phase containing the fraction qc of the lamellae-forming 
component (a guest) and a lamellar phase containing the 
fraction qL of this component (which is a host in this 
case). The change in mixture composition q in this range 
leads only to a change in the content of cylindrical and 
lamellar superstructures, their compositions remaining 
invariable. With increasing q the fraction of the lamellar 
superstructure increases and that of the cylindrical 
superstructure decreases until it completely disappears 
at q = qL. At q > qL the system again consists of one 
phase and a single lamellar structure is formed, equations 
(15)-(19). The increase in q in this composition range 
leads to an increase in the thickness of B lamellae and 
specific surface a and a decrease in the thickness of A 
lamellae with retention of the morphology of the 
superlattice. The characteristics of mixed lamellar 
superstructures have been described previously 2. 

The position of the binodals qc and qL which was 
determined by the numerical solution of equation (26) 
depends on a number of parameters: not only on the 
parameters of the individual block copolymers f l  and 
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f2 = f l / (  1 + ~t) on which q. depended (Figure 4) but 
also on the molecular weight N~ [used as the basis, see 
equations (1) and (2)], the surface tension coefficient • 
on the interface and the stiffness parameter p [equations 
(5), (17)-(20)]. It is clear from these equations that the 
last three parameters appear in the form of a single 
combination (~2/3(N~/p)l/3. With the increase in this 
combination the relative contribution of conformational 
free energy to the total free energy increases and that of 
mixing entropy decreases. 

The positions of the boundaries, qc and qL, of the 
two-phase region (Figure 5) were calculated for the 
values • -  0.53 and p ~ 1 for the polystyrene-poly- 
isoprene (PS-PI) block copolymer 7,a° and N~ = 100 
(where NA and NR are the numbers of the chain 
segments). With increasing N~ (and a proportional 
increase in the molecular weights of other elements) and 
with increasing (O2/p), the boundaries of the two-phase 
region become wider but this effect is slight (Figure 6). 

As for the dependence of the boundaries qc and qL on 
the compositions fz and f2 of individual block 
copolymers, it can be seen from Figure 5 that at a fixed 
composition (f2 = constant) of the lamellae-forming 
component the increase in the asymmetry f~ of the 
cylinder-forming component leads to a displacement of 
the two-phase region towards larger q and to its slight 
broadening. The increase in f2 at a fixed fz leads to a 
decrease in the width of the two-phase region and to its 
displacement to larger q. At f2 ~> fc when both com- 
ponents become cylinder-forming, the system exhibits a 
cylindrical superstructure over the entire composition 
range (case A). 

C: Mixture of lamellae-formin9 components with the 
composition of one of the components being f~ ~ fc 

It can be seen from Figure 4 (curves C-E)  that at 
certain values of f l  and f2 equation (24) has two roots, 
i.e. there are two points of intersection of curves Qc(q) 
and QL(q); these will be called q* and q'* (q'* < q*). An 
example of this behaviour is shown in Figure 7. Since 
QL(q) is a monotonically increasing function of q and 
Qc(q) passes through a minimum at low q, it can be 

1.00 

g o.5o 

0.00 L I = I , 
0.00 0.50 1.00 1.50 2.00 2.50 

f2 

F i g u r e  6 Boundaries qc and qL of the two-phase region v e r s u s  

composition of the lamellae-forming component f2 at fixed -/'1 = 3 : 
( - - )  N~ = 100; ( - - - )  N~ = 1000 

2.50 

I 
I 

2.00 II q'* q *  i i ~__ 
0.00 0.50 1.00 

q 

Figure 7 Conformational contribution to a free energy of mixed 
cylindrical (Qc) and lamellar (QL) superstructures versus composition 
of a mixture of two lamellae-forming block copolymers : fl = 2.2 and 
f2 =0.S 

easily seen that the situation can occur when both 
components are lamellae-forming. Moreover, the com- 
position f l  of a symmetric component is close to the 
boundary fc = 2.54 of the transition to the cylindrical 
morphology [the difference between QL(q = 0 )  and 
Qc(q = 0) is not great]. 

The intersections of QL(q) and Qc(q) indicate that 
their sequence changes with q and, hence, the 
morphology of the system also changes. Consequently, 
the change in mixture composition q of two lamellae- 
forming block copolymers should lead to two consecutive 
phase transitions. At low q the system forms a lamellar 
superstructure. Near q'* the transition to a cylindrical 
structure (which is in equilibrium in a certain 
composition range) takes place. On a further increase in 
q near q* phase transition occurs again but this time 
from the cylindrical to the lamellar structure. It should 
be noted that in our consideration f2 < f i ,  i.e. 
component 2 is more symmetric. Hence, the transition 
C-L  near q* caused by an increase in the content of the 
more symmetric component (and, hence, exhibiting a 
higher lamellae-forming capacity) may be called 
'normal'. The transition near q'* < q*, when an increase 
in the content of the more symmetric component leads 
to the rearrangement of the morphology L-C,  will be 
called 'anomalous'. 

Both transitions with a change in morphology are 
first-order phase transitions. Their complete description 
provides the solution of equation (25). The results shown 
in Figure 8 represent the binodal limiting of the two-phase 
regions. It is clear that with a decrease in f c -  f l  the 
range of compositions corresponding to the lamellar 
phase with low q (existing up to the anomalous L-C 
transition) becomes more narrow. For the lower 
boundary q[ of the two-phase region of this transition 
we have q~ --. 0. At f l  > fc  this region is absent and the 
anomalous transition disappears. At the same time a 
decrease in fc - f~ leads to an increase in the width of 
the range of compositions corresponding to the existence 
of the cylindrical phase (Figure 8). At f l  > fc it is stable 
in the entire range up to the normal transition C-L  (case 
B). 
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MORPHOLOGY AND CHARACTERISTICS OF 
A BLOCK COPOLYMER MIXTURE 

Figure 9 shows a diagram of the morphology of block 
copolymers bidisperse for the B block and being 
lamellae- and cylinder-forming f c  1 < f2 ,  f l  < f s  (with 
block B inside the cylindrical domain). The diagram 
shows four types of region corresponding to different 
behaviour in the system. Regions L and C correspond 
to mixtures of isomorphous block copolymers (both of 
them are either lamellae- or cylinder-forming). They form 
a single structure with the same morphology as the 
components over the entire range of mixture composi- 
tions. At the values of f l  and f2 corresponding to these 
regions equation (24) has no solution [dependences 
QL(q) and Qc(q) do not intersect]. These systems have 
been considered elsewhere 2 and in this paper (case A). 

Region C-L  in Figure 9 corresponds to a mixture of 
lamellae- and cylinder-forming block copolymers (case 
B). In this region equation (24) has one root q* (Figure 
4). An increase in the fraction q of the lamellae-forming 
(more symmetric) component leads to the transition C - L  
(Figure 5 ). 

A narrow region L - C - L  between regions L and C - L  
in Figure 9 corresponds to the existence of two roots in 
equation (24) (Figure 4). In this region a mixture of two 
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isomorphous lamellae-forming components undergoes 
two consecutive phase transitions: anomalous L-C and 
normal C-L,  when the fraction q of the more symmetric 
component changes (Figure 8, case C). 

The behaviour of the characteristics of the superstruc- 
ture upon the change in mixture composition will now 
be considered, equations ( 15 )- (19). When the content 
q of the more symmetric (and longer) component 
increases up to the phase transition range, a single 
superstructure containing a mixture of both components 
is formed. With increasing q in this superstructure, the 
value of R x (half-width of the B lamellae in the lamellar 
superstructure or the radius of the B domain in the 
cylindrical structure) increases, mainly because of an 
increase in the mean size ]qB of the B blocks, equation 
(8). In the case of a mixture of block copolymers, this 
effect is stronger than for individual block copolymers 7. 
The value of R x for the mixture always exceeds that of 
an individual block copolymer for which N B = ]qB. 
Moreover, this difference is greater for the cylindrical 
morphology than for the lamellar morphology. 

The behaviour of the system changes when it 
approaches the phase transition range. Let us consider 
the normal C - L  transition with the boundaries of the 
two-phase region qL and qc > qL. Two superstructures 
with a constant composition coexist over the entire range 
qL ~< q ~< qc : a lamellar superstructure with composition 
qL and a cylindrical superstructure with composition qc. 
The increase in q in this range leads only to the 
redistribution of the content of these structures. Equation 
(15) makes it possible to evaluate the ratio between the 
characteristic dimensions of the B elements of structures 
R E and R c. It can be seen from this equation that at the 
point q* where QL(q*) = Qc(q*) we have 

RE(q*) = 1/2gc(q*) (27) 

However, the compositions of the coexisting phases do 
not coincide qc < q* < qL. Hence, the difference between 
the sizes should be smaller 

Rc(qc)/RL(qL ) < 2 (28a) 

For an anomalous L -C  transition condition (27) should 
also be met. However, in this case the lower boundary 
q[ of the two-phase region limits the lamellar structure, 
and the upper boundary limits the cylindrical structure: 
q~ < q '*< q~. Hence, in this case the absence of 
coincidence between the compositions of the coexisting 
phases leads to an increase in the difference between the 
sizes 

Rc(q'c)/RL(q'L) > 2 (28b) 

Schematic dependences Rx (q) are shown in Figure I0. 
Equations (15)-(20) also make it possible to analyse 

the behaviour of other characteristics. The area tr= per 
chain increases monotonically with increasing q in the 
range of a one-phase region of the lamellar structure. In 
this case the size H of the A sublamellae decreases. For 
a cylindrical structure the dependence ac(q) coinciding 
with AFc(q) is non-monotonic and passes through a 
minimum. As for the behaviour of tr x upon transition, at 
point q* (and also q'*) we have O'L(q* ) = O'c(q* ). Since 
phase compositions do not coincide, the values of ax in 
the coexisting structures also do not coincide. In this case 
both for the normal C - L  transition and for the 
anomalous L-C transition we have ac(qc ) < O'L(qL ). 

Figure II shows the average mixture composition 
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CHAIN STRETCHING IN SUPERSTRUCTURES 

As has already been emphasized, the theory of cylindrical 
and lamellar mesophases formed by a binary mixture of 
diblock copolymers developed here and previously 2 
assumes the stretching of blocks of both components with 
respect to the Gaussian size. This requirement imposes 
certain restrictions on both the molecular weight of the 
blocks and on the mixture composition q. This problem 
has been discussed in detail in reference 2 taking as an 
example a lamellar mesophase formed by a binary 
mixture of block copolymers with the same compositions 
but different molecular weights. In particular, it was 
shown that the main restricting factor is the condition 
of stretching of longer blocks. When this condition is not 
met, the problem of the stability of a single structure 
remains unsolved. If the condition of stretching of shorter 
blocks is not fulfilled, this is not so important and leads 
only to an error in the evaluation of the geometric 
parameters of the structure being formed without 
affecting the conclusion of thermodynamic preference of 
the resulting supermolecular structure. 

In the case considered here, a cylindrical structure 
formed by block copolymers bidisperse for the 
domain-forming block B and monodisperse for the 
matrix block A, the requirement of block stretching in 
the elements of the mesophase reduces to three 
inequalities : 

H1 > a px/~a ~ 

R > a x / ~  2 (29) 

H - R c > a px//pX/~A 

The first two inequalities ensure the stretching of short 
and long blocks in the cylindrical domain, and the third 
ensures the stretching of matrix blocks with respect to 
the Gaussian size. Just as in the case of the 
lamellae-forming mesophase, when the conditions of 
short-block stretching are not met, equations (15) (19) 
give slightly excessive values for the specific surface tr/a 2, 
whereas the values of R c and H are underestimated. In 
this case the conclusion of the thermodynamic preference 
of the formation of a single mixed structure is retained. 

f = (1 - q ) f l  + qf2 corresponding to the boundaries of 
the two-phase region as a function of the composition of 
the lamellae-forming block copolymer f2 at fixed f r  It 
is clear that the values f(qL), f (qc)  greatly differ from 
the value of fc = 2.54 corresponding to the transition 
L-C in the individual block copolymers. The two-phase 
region lies in the range of the lamellar structure, f(qL), 
f ( q c ) < f c .  It follows from Figure 11 that the 
approximation of the monodisperse chain layer with an 
average composition f does not correspond to the real 
state of the system. 

It should be noted that, generally speaking, Figure 9 
may be incomplete even for the range of values of f l  and 
f2 considered here. By analogy with the behaviour of the 
system in the region L - C - L ,  it may be expected that in 
a mixture of two cylinder-forming block copolymers in 
which the composition of one of the block copolymers 
is close to fs, i.e. to that of the transition to spherical 
morphology, the region C - S - C  can exist. We hope to 
further discuss this problem in future work. 

COMPARISON WITH EXPERIMENTAL DATA 

The experimental investigations of the supermolecular 
structure in a binary mixture of narrow-disperse 
cylinder- and lamellae-forming block copolymers with 
different molecular weights and composition have been 
carr ied out  9 by small-angle X-ray scattering. A change 
in the content q of one of the components of the mixture 
always led to a change in the morphology of the 
supermolecular structure. This was indicated by a change 
of the positions of the Bragg reflections characterizing 
the type of structure. In the range of mixture composition 
close to the transition value, a two-phase region was 
observed in some systems with the coexistence of two 
structures with different morphologies : a cylindrical and 
a lamellar superstructure. Experimentally two sets of 
Bragg reflections corresponding to two different types of 
structures were fixed in this range of mixture 
compositions. 

In all the systems investigated in reference 9, one of 
the components was a cylinder-forming three-block 
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symmetric P S - P I - P S  copolymer with a molecular 
weight of 10.5 x 104 and the weight fraction of the 
domain-forming block PS ~ 26%. The second compo- 
nent was a two- or three-block lamellae-forming PS and 
PI copolymer. Let us compare the experimental results 
in reference 9 with the theoretical predictions of the 
present work by choosing for comparison a mixture of 
SIS-2C SI 5 copolymers 9 the parameters of which 
correspond to the conditions of the present work: the 
monodispersity of both components for block A (PI 
block). If a molecule of a three-block P S - P I - P S  
copolymer with molecular weight M = (2Ma + MA) is 
regarded as two molecules of a two-block copolymer with 
a molecular weight of M/2, we obtain for the equivalent 
two-block copolymer Mps = 13 600, Mpl = 38 900, f l  = 
(Mps/Mpl)(Vs/Vl) ~ 3.18. According to reference 9, the 
molecular weights of the blocks of the second component 
SI -5  are Mps = 35 300 and Mp~ = 36700, so that the 
matrix blocks of PI are approximately identical for both 
components and ~ = (35 300 - 13 600)/13 600 - 1.60. 

The values of the Bragg spacings d reported in reference 
9 are used for the calculation of the radius Rc of the 
cylindrical domain and the half-width R L of lamellar 
layers formed by PS blocks: 

d 1 
R L = _ 

2 1 + f l / ( 1  + ~q) 
(30) 

R c = d  + f , ) / ( l  

where q is the numerical fraction of the lamellae-forming 
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component. Figure 12 shows the theoretical dependence 
of relative dimensions on qRc(q)/Rc(q=O) and 
RL(q)/Rc( q ---0) calculated from equations (15) and 
(19) for f l  = 3.18 and ~ = 1.6. The boundaries of the 
two-phase region q c=0 .4 3 3  and qL~0 .642  were 
calculated from equation (25) at N~ = 40 and q) = 0.53. 
It should be noted that because the dependence of qc 
and qL on N~ is slight, the arbitrary character of the 
calculation of the number of units N 1 in the 
domain-forming block (due to the simplified model for 
a block copolymer chain as a chain with a constant 
thickness a) hardly affects the position of the boundaries 
qL and qc- Thus, at N 1 = 50 we have qL ~ 0.646 and 
qc ~ 0.429. It can be seen from Figure 12 that the theory 
developed in this paper describes with good precision the 
behaviour of a real system9 : the position and the width 
of the region of the two-phase transition and the 
dependence of the domain size on mixture composition 
in the range of each one-phase region. 

Unfortunately, there are no systematic investigations 
of binary mixtures of block copolymers under conditions 
of microphase separation. Consequently, it is not possible 
to compare the experimental data with some other 
predictions from the results of the present work: in 
particular, the possibility of the coexistence of a 
cylindrical structure in a mixture of lamellae-forming 
block copolymers in a narrow composition range. It is 
desirable to search for these non-trivial states of the 
mixture by using high molecular weight samples because 
an increase in molecular weight leads to a broadening in 
the stability range of the mixed states of the system 
(lamellae). 
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